RESEARCH ARTICLE
A Theoretical Analysis on Bone Drilling Temperature Field of Superhard Drill
Yali Hou, Changhe Li*, Hongliang Ma, Yanbin Zhang, Min Yang, Xiaowei Zhang
Article Information
Identifiers and Pagination:
Year: 2016Volume: 10
First Page: 109
Last Page: 125
Publisher Id: TOMEJ-10-109
DOI: 10.2174/1874155X01610010109
Article History:
Received Date: 9/10/2015Revision Received Date: 7/12/2015
Acceptance Date: 21/1/2016
Electronic publication date: 23/05/2016
Collection year: 2016
open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
To overcome strong drilling force and over high temperature during orthopedic surgery, the four medical drills with different geometrical shapes by using superhard materials were designed. The bone drilling temperature field of superhard drill was theoretical analyzed. Results showed that brazed step drill has the most ideal drilling temperature. It controls the maximum bone temperature below 47°C even under dry drilling. The maximum bone temperature of brazed twist drill is a little higher than 47°C. With appropriate cooling method, brazed twist drill also could provide ideal effect. On the contrary, drilling temperatures of common twist drill, brazed abrasive drill and brazed PCBN superhard drill increase successively. All of them are far higher than the critical temperature of osteonecrosis. The maximum temperatures of brazed step drill, brazed twist drill, common twist drill, brazed abrasive drill and brazed PCBN superhard drill under steady state at about 45.9°C, 61.5°C, 70.5°C, 101.2°C and 113.2°C, respectively. Brazed step drill shows the lowest drilling temperature, followed by brazed twist drill, standard twist drill, brazed abrasive drill and brazed PCBN superhard drill successively.