REVIEW ARTICLE
On High-precision Subpixel-based Drilling Technique for Suture Needles with Thread
Tiebo Sun*, Hong Li
Article Information
Identifiers and Pagination:
Year: 2014Volume: 8
First Page: 607
Last Page: 612
Publisher Id: TOMEJ-8-607
DOI: 10.2174/1874155X01408010607
Article History:
Received Date: 19/11/2014Revision Received Date: 08/01/2015
Acceptance Date: 20/01/2015
Electronic publication date: 31/12/2014
Collection year: 2014
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
In order to improve the automation of end-hole drilling process in the production of suture needles with thread, a high-precision subpixel-based drilling method is proposed. According to the edge detection principle in mathematical morphology, combined with the characteristics of the magnified images of the ends of suture needles to be drilled, the morphological edge detection operators with variable structural elements are constructed to achieve noise suppression and fully extract the detailed information of edges of images of needle end holes to be drilled. Then, the subdivision method of spatial moments is adopted to realize the subpixel positioning of pixel-level edges. Finally, least squares fitting method is used to achieve the high-precision positioning of center of needle end hole to be drilled. The experimental results of the 0.5 mm needle samples show that the drilling method proposed in this study has a concentricity error no more than ± 0.2 μm and an average drilling time of 0.65S. Moreover, the method also boasts good real-time performance and stability and meets the automated production needs of drilling process of suture needles with thread.