REVIEW ARTICLE
Analysis of Thermal-Mechanical Coupling of Automotive Disc Brake Based on Numerical Simulation Method
Kuiyang Wang*, Jinhua Tang
Article Information
Identifiers and Pagination:
Year: 2015Volume: 9
First Page: 28
Last Page: 35
Publisher Id: TOMEJ-9-28
DOI: 10.2174/1874155X01509010028
Article History:
Received Date: 8/1/2015Revision Received Date: 15/1/2015
Acceptance Date: 16/1/2015
Electronic publication date: 13/2/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The background and necessity of application of numerical simulation method in research on friction materials of automotive brake are analyzed. The numerical analysis methods of conversion of braking energy, distribution of friction heat, transfer of friction heat and thermal mechanical coupling, are discussed. The dynamic temperature field and thermal stress field of the same brake disc and two kinds of friction plates of different materials, which are the composite materials based on resin and the powder metallurgy based on copper, are simulated and analyzed respectively under emergency braking. The effect of friction materials’ performance on friction temperature and thermal stress distribution is obtained. The results show that the friction performance of composite materials based on resin is better than the powder metallurgy based on copper. The results are consistent with the experimental results. The numerical simulation methods proposed have a good predictive effect on the typical characteristics of friction materials in the process of braking, which provides effective references for preparation and optimization design of friction materials of brake.