REVIEW ARTICLE
Crashworthiness Optimization of Thin-Walled Rail with Different Collision Boundary Conditions
Hequan Wu*, 1, 2, Libo Cao1, Hongfeng Mao2
Article Information
Identifiers and Pagination:
Year: 2015Volume: 9
First Page: 558
Last Page: 563
Publisher Id: TOMEJ-9-558
DOI: 10.2174/1874155X01509010558
Article History:
Received Date: 17/2/2014Revision Received Date: 21/3/2015
Acceptance Date: 9/6/2015
Electronic publication date: 10/9/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
As the world automotive crash safety regulations are different, it’s very important to design the energy absorbing structures that satisfy different collision boundary conditions. A large number of vehicle energy absorption beams dimensions were measured and then a common thin-walled rail was chosen. Considering the complexity of automobile collision boundary, finite element analysis and experimental design, interval uncertain algorithms, Kriging approximate model, NSGA - II genetic algorithm were combined to optimize the structure of the thin-walled rail with different impact velocity and different impact angle. Then the Pareto optimal solution was obtained. Thin walled beam after optimization has good energy absorption characteristics under different collision boundary conditions. Research results provide a method for the designing of a car that meets various crash regulations at the same time.