REVIEW ARTICLE
Study on Mechanical Design Optimization Based on Improved Particle Swarm Optimization Algorithm
Zhou Ning*, Zhang Jing
Article Information
Identifiers and Pagination:
Year: 2015Volume: 9
First Page: 961
Last Page: 965
Publisher Id: TOMEJ-9-961
DOI: 10.2174/1874155X01509010961
Article History:
Received Date: 17/02/2014Revision Received Date: 21/03/2015
Acceptance Date: 09/06/2015
Electronic publication date: 7/10/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
In view of local optimization in particle swarm optimization algorithm (PSO algorithm), chaos theory was introduced to PSO algorithm in this paper. Plenty of populations were generated by using the ergodicity of chaotic motion. The uniformly distributed initial particles of the particle swarms were extracted from the populations according to the Euclidean distance between particles, so that the particles could uniformly distribute in the solution space. Local search was carried out on the optimal position of the particles during evolution, so as to improve the development capability of PSO algorithm and prevent its prematurity, thus enhancing its global optimizing capability. Then the improved PSO algorithm was applied to mechanical design optimization. With optimization design for two-stage gear reducer as the study object, objective function and constraint conditions were determined by building a mathematical model of optimization design, thus realizing optimization design. Simulation and comparison between the improved algorithm and unimproved algorithm show that improved PSO algorithm can optimize the optimization results of PSO algorithm at a faster convergence rate.