REVIEW ARTICLE
Synchronization Control of Large Crawler Crane Driven by Double Winches Using Hook Angle Feedback Information
Jun Yao*, Yu Tang, Zhencai Zhu
Article Information
Identifiers and Pagination:
Year: 2015Volume: 9
First Page: 977
Last Page: 981
Publisher Id: TOMEJ-9-977
DOI: 10.2174/1874155X01509010977
Article History:
Received Date: 17/02/2014Revision Received Date: 21/03/2015
Acceptance Date: 09/06/2015
Electronic publication date: 7/10/2015
Collection year: 2015
open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
During the operation of a crawler crane driven by double winches, it is important to make the two winches actuate synchronously so that the hook is in a horizontal state to prevent accidents. In this paper, a novel synchronization control strategy for crawler crane driven by double winches using hook angle feedback information is proposed. The hook angle proportional to the length error of ropes is measured by a wireless angle sensor firstly and is then employed as a feedback control signal. To further improve the synchronization performance, cross-coupled control scheme together with the variable speed PID control is utilized on the basis of the collected hook angle signal. Simulations and experiments are then conducted and the results demonstrate that the proposed control scheme can obtain a better synchronization performance than the conventional control strategy using encoders and the inclination of the hook is greatly reduced to a limited small range.